On the primary ideal structure at infinity for analytic Beurling algebras
نویسندگان
چکیده
منابع مشابه
the structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولA-infinity Structure on Ext-algebras
Let A be a connected graded algebra and let E denote its Extalgebra L i Ext i A(kA, kA). There is a natural A∞-structure on E, and we prove that this structure is mainly determined by the relations of A. In particular, the coefficients of the A∞-products mn restricted to the tensor powers of ExtA(kA, kA) give the coefficients of the relations of A. We also relate the mn’s to Massey products.
متن کاملOn the Ideal Structure of Banach Algebras
For Banach algebras A in a class which includes all group and function algebras, we show that the family of ideals of A with the same hull is typically quite large, containing ascending and descending chains of arbitrary length through any ideal in the family, and that typically a closed ideal of A whose hull meets the Silov boundary of A cannot be countably generated algebraically. Guided by t...
متن کاملM-IDEAL STRUCTURE IN UNIFORM ALGEBRAS
It is proved that if A is aregular uniform algebra on a compact Hausdorff space X in which every closed ideal is an M-ideal, then A = C(X).
متن کاملModules-at-infinity for quantum vertex algebras
This is a sequel to [Li4] and [Li5] in a series to study vertex algebra-like structures arising from various algebras such as quantum affine algebras and Yangians. In this paper, we study two versions of the double Yangian DY~(sl2), denoted by DYq(sl2) and DY ∞ q (sl2) with q a nonzero complex number. For each nonzero complex number q, we construct a quantum vertex algebra Vq and prove that eve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arkiv för Matematik
سال: 1985
ISSN: 0004-2080
DOI: 10.1007/bf02384421